Nanocomposites and nanomaterials

Absorption properties of SiO₂ and "KERN-DP" anisotropy automated system

Y.A. Onanko, G.T. Prodayvoda, S.A. Vyzhva, A.P. Onanko, M.P. Kulish, O.P. Dmytrenko, A.Y. Kolendo, N.V.Kutsevol

Taras Shevchenko Kyiv national university, Volodymyrs'ka str., 64, Kyiv-01601, Ukraine.

onanko@univ.kiev.ua

A non-destructive method for the technological control of SiO_2 , nanomaterials structure defects by measuring internal friction (IF) and the elastic module E was developed. The defect of IF $\Delta Q^{\text{-1}}/Q^{\text{-1}}_{sk}$ in SiO_2 on fig. 1 and US attenuation coefficient α from the oscilloscopegrammas of corresponding impulses polarization $V_{P[001]}$ in SiO_2 skeleton before and after the satiation $V_{P[001]}^{\text{-H}}$ from In of amplitudes relationship A_1 , A_2 (A_0 – without specimen) and were determined.

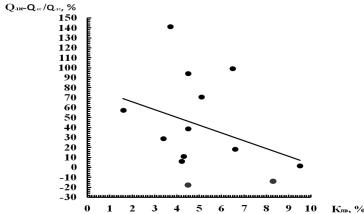


Fig. 1. Dependence the defect of internal friction $\Delta Q^{-1}/Q^{-1}_{sk}$ in SiO₂ from the open porosity coefficient $K_{PO}=V_{PO}/V$.

The automated system of the anisotropy ultrasound measurings data treatment of velocities is built on windows principle. The structure of database is developed on language of mySQLinformation, physical properties, the special procedures of data management are developed.

Thus, the measuring of internal friction background $Q^{\text{-}1}_0$ after different heat, mechanical, radiation treatments gives information about the changing of the thermoelastic strains fields σ_i in SiO₂, nanomaterials.